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Abstract

We present an ensemble method for concept drift that dynamically creates and removes weighted
experts in response to changes in performance. The method, dynamic weighted majority (DWM),
uses four mechanisms to cope with concept drift: It trains online learners of the ensemble, it weights
those learners based on their performance, it removes them, also based on their performance, and it
adds new experts based on the global performance of the ensemble. After an extensive evaluation—
consisting of five experiments, eight learners, and thirty data sets that varied in type of target con-
cept, size, presence of noise, and the like—we concluded that DWM outperformed other learners
that only incrementally learn concept descriptions, that maintain and use previously encountered
examples, and that employ an unweighted, fixed-size ensemble of experts.
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1. Introduction

In this paper, we describe an ensemble method designed expressly for tracking concept drift (Kolter
and Maloof, 2003). Ours is an extension of the weighted majority algorithm (Littlestone and War-
muth, 1994), which also tracks drifting concepts (Blum, 1997), but our algorithm, dynamic weighted
majority (DWM), adds and removes base learners or experts in response to global and local perfor-
mance. As a result, DWM is better able to respond in non-stationary environments.

Informally, concept drift occurs when a set of examples has legitimate class labels at one time
and has different legitimate labels at another time. Naturally, over some time scale, the set of
examples and the change they undergo must produce a measurable effect on a learner’s performance.
Concept drift is present in many applications, such as intrusion detection (Lane and Brodley, 1998)
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and credit card fraud detection (Wang et al., 2003). Indeed, tracking concept drift is important for
any application involving models of human behavior.

In previous work, we evaluated DWM using two synthetic data sets, the STAGGER concepts
(Schlimmer and Granger, 1986) and the SEA concepts (Street and Kim, 2001), achieving the best
published results (Kolter and Maloof, 2003). Using the STAGGER concepts, we also made a di-
rect comparison to Blum’s (1997) implementation of weighted majority (Littlestone and Warmuth,
1994).

Here, we present additional results for the STAGGER data set by making a direct comparison to
our implementation of the STAGGER learning system (Schlimmer and Granger, 1986) and to a series
of rule learners for concept drift that use the AQ algorithm: AQ-PM (Maloof and Michalski, 2000),
AQ11-PM (Maloof and Michalski, 2004), and AQ11-PM+WAH (Maloof, 2003). We also present
results for two real-world data sets. The first is the CAP data set (Mitchell et al., 1994), which
Blum (1997) used to evaluate his implementation of weighted majority. The second is a data set for
electricity pricing, which Harries (1999) used to evaluate Splice2. Finally, we include results for
twenty-six UCI data sets (Asuncion and Newman, 2007) because we were interested in evaluating
DWM’s performance on static concepts.

Overall, results suggest that a weighted ensemble of incremental learners tracks drifting con-
cepts better than learners that simply modify concept descriptions, that store and learn from exam-
ples encountered previously, and that use an unweighted ensemble of experts. Although DWM has
no advantage over a single base learner for static concepts, results from 26 UCI data sets show that,
overall, DWM performs no worse than a single base learner.

We cite two main contributions of this work. First, we present a general algorithm for using any
online learning algorithm for problems with concept drift. Second, we present results of an extensive
empirical study characterizing DWM’s performance along several dimensions: with different base
learners, with well-studied data sets, with class noise, with static concepts, and with respect to
learners appearing previously in the literature.

The organization of the paper is as follows. In the next section, we survey work on the problem
of concept drift, on ensemble methods, and at the intersection: work on ensemble methods for con-
cept drift. In Section 3, we describe dynamic weighted majority, an ensemble method for tracking
concept drift. In Section 4, we present the results of our empirical study. Section 5 concludes the
paper, and it is here that we discuss directions for future research.

2. Background and Related Work

Dynamic weighted majority is an ensemble method designed expressly for concept drift. For many
years, research on ensemble methods and research on methods for concept drift have intermingled
little. However, within the last few years, researchers have proposed several ensemble methods
for tracking concept drift. In the next three sections, we survey relevant work on the problem of
tracking concept drift, on ensemble methods, and on ensemble methods for tracking concept drift.

2.1 Concept Drift

Concept drift (Schlimmer and Granger, 1986; Maloof, 2005) is an online learning task in which
concepts change or drift over time. For example, with a professor’s e-mail classification system, the
concept of an important e-mail will change with semesters and with conference deadlines. Concepts
may change suddenly or gradually, and if we view concepts as shapes in a representation space, then
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they can change their shape, size, and location. In concrete terms, concept drift occurs when the
class labels of a set of examples change over time. Researchers have used both real (e.g., Harries
and Horn, 1995; Blum, 1997; Lane and Brodley, 1998; Harries, 1999; Black and Hickey, 2002;
Gramacy et al., 2003; Wang et al., 2003; Gama et al., 2004; Delany et al., 2005; Gama et al., 2005;
Scholz and Klinkenberg, 2005; Tsymbal et al., 2005) and synthetic (e.g., Schlimmer and Granger,
1986; Widmer and Kubat, 1996; Maloof and Michalski, 2000; Hulten et al., 2001; Street and Kim,
2001; Kolter and Maloof, 2003; Klinkenberg, 2004; Maloof and Michalski, 2004; Gama et al.,
2005; Kolter and Maloof, 2005; Scholz and Klinkenberg, 2005) data sets as inspiration for and the
evaluation of a variety of methods for tracking concept drift. There has also been theoretical work
on this problem (e.g., Helmbold and Long, 1991; Kuh et al., 1991; Helmbold and Long, 1994; Auer
and Warmuth, 1998; Mesterharm, 2003; Monteleoni and Jaakkola, 2004; Kolter and Maloof, 2005),
but a thorough survey of this work is beyond the scope of the paper.

STAGGER (Schlimmer and Granger, 1986) was the first system designed to cope with concept
drift. It uses a distributed concept description consisting of class nodes linked to attribute-value
nodes by probabilistic arcs. Two probabilities associated with each arc represent necessity and
sufficiency, and are updated based on a psychological theory of association learning (Rescorla,
1968). In addition to adjusting these probabilities when new training examples arrive, STAGGER

can also add nodes corresponding to new classes and new features. To better cope with concept
drift, STAGGER may decay its probabilities over time. Empirical results on a synthetic data set,
now known as the STAGGER concepts, show the method acquiring three changing target concepts in
succession. The STAGGER concepts have been a centerpiece of numerous evaluations (Widmer and
Kubat, 1996; Widmer, 1997; Maloof and Michalski, 2000; Kolter and Maloof, 2003; Maloof and
Michalski, 2004; Kolter and Maloof, 2005), and we discuss them further in Section 4.1.

Concept versioning (Klenner and Hahn, 1994) is a method for coping with gradual or evolu-
tionary concept drift. It uses a frame representation and copes with such drift by either adjusting
current concept descriptions or creating a new version of these descriptions. The system creates a
new version when an instance’s attribute values and ranges present in current concept descriptions
are dissimilar, based on a measure that accounts for both quantitative (e.g., value differences) and
qualitative (e.g., increasing trend) information. Empirical results, based on 124 examples of com-
puters sold between 1987 and 1993, suggest that the system acquired three versions of concepts
based on machines’ clock frequency and memory size.

The FLORA systems (Widmer and Kubat, 1996) track concept drift by maintaining a sequence of
examples over a dynamically adjusted window of time and using them to induce and refine three sets
of rules: rules covering the positive examples, rules covering the negative examples, and potential
rules that are, at present, too general. Examples entering and leaving the window cause FLORA to
refine rules, to move them from one set to another, or to delete them. FLORA2 uses just these basic
mechanisms, whereas FLORA3 is an extension that handles recurring contexts. FLORA4 extends
FLORA3 with mechanisms for coping with noise, similar to those present in IB3 (Aha et al., 1991).
On the STAGGER concepts, the method generally performed well in terms of slope and asymptote
after concepts changed. (We further analyze these results in Section 4.1.)

Although not expressly designed for concept drift, the MetaL(B) and MetaL(IB) systems (Wid-
mer, 1997) use meta-learning with naive Bayes and instance-based learning, respectively, to cope
with reoccurring contexts. For example, the concept of warm is different in the summer than in the
winter. In this scenario, season or average temperature is a contextual attribute that identifies the
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relevant concept of warm. As an agent moves from one season to the next, it uses the contextual
variable to better focus the base algorithm on those features relevant for learning and prediction.

Meta-learning mechanisms identify contextual attributes by maintaining co-occurrence and fre-
quency counts over the learner’s entire history and over a fixed window of time. Using a χ2 test,
the meta-learning algorithm identifies contextual features and those predictive features relevant for
the given context. The base learner then uses the predictive features of the contextually relevant
examples in the current window to form new concept descriptions. By adding a contextual variable
to the STAGGER concepts (Schlimmer and Granger, 1986), experimental results using predictive
accuracy suggest that the meta-learners were able use contextual features to acquire target concepts
better than and more quickly than did the base learners alone. When compared to FLORA4 (Widmer
and Kubat, 1996), which retrieves previously learned concept descriptions when contexts reoccur,
MetaL(B) often performed better in terms of slope and asymptote, even though it relearned new
concept descriptions rather than retrieving and modifying old ones.

Lane and Brodley (1998) investigated methods for concept drift in one-class learning problems
(i.e., anomaly detection). For an intrusion detection domain, they used instance-based learning in
which instances were fixed-length sequences of UNIX commands. As a user enters new commands,
the system calculates a measure of similarity between the current instance and past instances. They
investigated two methods for coping with concept drift. One fits a line to the sequence of similarity
measures in a window and uses its direction and magnitude to adjust the decision threshold. A
second uses the slope of the line to determine if there is a stable or changing trend and inserts new
examples into a user profile only if the trend is changing. Both methods proved useful in striking the
delicate balance between learning a user’s changing behavior and detecting anomalous behavior.

CD3 (Black and Hickey, 1999) uses ID3 (Quinlan, 1986) to learn online from batches of training
data. The method maintains a collection of examples from the stream, all annotated with a time
stamp of current. It annotates examples in a new training batch with a stamp of new. For static
concepts, the time stamp is an irrelevant attribute, but if drift occurs, then the time stamp will
appear in induced trees. Moreover, one can use its position in the tree as an indicator of how much
drift may have occurred—the more relevant the time stamp, the higher it will appear in the tree, and
the more drift that has occurred. After pruning, the method produces a set of valid and invalid rules
by enumerating paths in the tree with new and current time stamps, respectively. Rule conditions
containing a time stamp are then removed.

The performance element uses the valid rules for prediction, and the method uses the invalid
rules to remove outdated examples from its store. However, depending on parameter settings, if
both an invalid and a valid rule cover a stored example, then the method removes the example.
Results from an empirical study involving synthetic data and varying amounts of class noise suggest
that CD3 copes with revolutionary and evolutionary concept drift better than—in terms of slope and
asymptote—ID3 learning from only the most recent batch and better than ID3 learning from all
previously encountered batches.

CD4 (Hickey and Black, 2000) extends CD3 by letting time stamps for a batch be numeric,
although the method no longer uses invalid rules to remove stored examples. CD5 (Hickey and
Black, 2000) extends CD4 by assigning numeric time stamps to individual examples, rather than to
batches. In an empirical study with synthetic data and evolutionary and revolutionary changes in
target concepts, all three systems performed comparably.

In subsequent work, Black and Hickey (2002) applied CD3 to twenty-seven months of customer-
call data and were able to detect concept drift based on the number and height of time stamps in the
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induced decision trees. Indeed, during one period, the time stamp was the most relevant attribute
and at the root of the decision tree.

Syed et al. (1999) present an online algorithm for training support vector machines (Boser et al.,
1992). The method adds previously obtained support vectors to the new training set and then builds
another machine. When compared to a batch algorithm, the online method performed comparable
on several UCI data sets (Asuncion and Newman, 2007). The authors pointed to drops and recoveries
in predictive accuracy during the incremental runs as evidence that SVMs can handle drift.

The presence of drops and recoveries are necessary for detecting concept drift, but they are not
sufficient. The drops in predictive accuracy could have been due to sampling, and in general, it
may be difficult to determine if a learner is coping with concept drift or is simply acquiring more
information about a static concept. This type of concept drift has been called virtual concept drift,
as opposed to real concept drift (Klinkenberg and Joachims, 2000). Indeed, the data sets included
in the evaluation (e.g., monks, sonar, and mushroom) are not typically regarded as having concepts
that drift.

Kelly et al. (1999) define population drift as being “related to” concept drift, noting that the
term concept drift has no single meaning. They define population drift as change in the problem’s
probability distribution. Such changes can occur in the prior, conditional, and posterior distribu-
tions, and using artificial data, they analyze the impact on performance of changes to each of these
distributions.

The term concept drift has been applied to different phenomena, such as drops and recoveries
in performance during online learning (Syed et al., 1999). However, in concrete terms, the term has
historically meant that the class labels of instances change over time, established in the first paper on
concept drift (Schlimmer and Granger, 1986). Such change corresponds to change in the posterior
distribution and in the conditional distribution. However, the prior distribution may not change, and
changes in the conditional distribution will not necessarily mean that concept drift has occurred.

Klinkenberg and Joachims (2000) used a support vector machine to size windows for concept
drift. Rather than tuning parameters for an adaptive windowing heuristic (c.f. Widmer and Kubat,
1996), the algorithm sizes the window by minimizing generalization error on new examples. Upon
receiving a new batch of examples, the method generates support vector machines with various sizes
of windows using previously encountered batches of training examples, and selects the window
size that minimizes the ξα-estimate, an approximation to the leave-one-out or jackknife estimator
(Hinkley, 1983). Experimental results on a manually constructed data set derived from 2,608 news
documents suggest that exhaustively searching for a window’s size was better, in terms of slope and
asymptote of predictive accuracy, than a window of fixed size. Results from subsequent experiments
indicate that selecting examples in batches or using an adaptive window yielded higher precision and
recall than did weighting examples based on their age or their fit to the current model (Klinkenberg,
2004).

The AQ-PM systems (Maloof and Michalski, 2000, 2004; Maloof, 2003), like the FLORA systems
(Widmer and Kubat, 1996), induce rules and use partial instance memory (PM) to maintain a subset
of the examples from the input stream. However, rather than selecting a sequence, the AQ-PM

systems select those examples that lie on the boundaries of concept descriptions, thus they store
examples that are important but that do not necessarily reoccur in the stream. AQ-PM (Maloof and
Michalski, 2000) uses the AQ algorithm (Michalski, 1969), a batch learning algorithm, to form
rules by simply reapplying the algorithm when new examples arrive. It stores examples for a fixed
period of time. AQ11-PM and GEM-PM are incremental versions that use the AQ11 (Michalski
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and Larson, 1983) and GEM (Reinke and Michalski, 1988) algorithms, respectively, to form rules.
Finally, AQ11-PM+WAH is an extension of AQ11-PM that uses Widmer and Kubat’s (1996) window
adjustment heuristic (WAH) to dynamically size the window of time over which examples are kept.
The STAGGER concepts were the centerpiece in the evaluation of all of these systems.

The Concept-adapting Very Fast Decision Tree (CVFDT) learner (Hulten et al., 2001) extends
VFDT (Domingos and Hulten, 2000) by adding mechanisms for handling concept drift. VFDT grows
a decision tree only from its leaf nodes, so there is no restructuring of the tree (cf. sc iti, Utgoff et al.,
1997). The method maintains a decision tree and maintains counts of attribute values for classes in
each leaf node. New examples propagate through the tree to a leaf node with the algorithm updating
the counts. If the propagated examples and the examples used to form a leaf node are not of the
same class, then the method uses a splitting criterion and the Hoeffding (1963) bound to determine
if the node should be split.

CVFDT extends VFDT by maintaining at each node in the tree a list of alternate subtrees and
attribute-value counts for each class. Like VFDT, new examples propagate through the tree to a leaf
node, but they also propagate through all of the alternate subtrees along this path. Periodically, the
method forgets examples, and if an alternate subtree is more accurate than the current one, it swaps
them. Empirical results on a synthetic data set consisting of a rotating hyperplane, five million
training examples, and drift every 50,000 time steps, suggest that CVFDT produced smaller, more
accurate trees than did VFDT.

2.2 Ensemble Methods

Ensemble methods maintain a collection of learners and combine their decisions to make an overall
decision. Generally, an algorithm applied multiple times to the same data set will produce identical
classifiers that make the same decisions, so for ensemble methods to work, there must be some
mechanism to produce different classifiers. This is accomplished by either altering the training data
or the learners in the collection.

Bagging (Breiman, 1996) is one of the simplest ensemble methods. It entails producing a set
of bootstrapped data sets from the original training data. This involves sampling with replacement
from the training data and producing multiple data sets of the same size. Once formed, a learning
method produces a classifier from each bootstrapped data set. During performance, the method
predicts based on a majority vote of the predictions of the individual classifiers.

Weighted majority (Littlestone and Warmuth, 1994), instead of using altered training sets, relies
on a collection of different classifiers, often referred to as “experts.” Each expert begins with a
weight of one, which is decreased (e.g., halved) whenever an expert predicts incorrectly. To make
an overall prediction, the method takes a weighted vote of the expert predictions, and predicts the
class with the most weight. Winnow is a similar algorithm, but also increases the weights of experts
that predict correctly (Littlestone, 1991).

Boosting (Freund and Schapire, 1996) is a method that generates a series of weighted classi-
fiers. It iteratively weights training examples based on how well a classifier predicts them, and in
turn, weighting the classifier based on the weights of the examples used to construct it. During
performance, each classifier in the ensemble returns a prediction for an instance, and then the global
method predicts based on a weighted-majority vote. This method constructs classifiers specialized
at predicting examples in specific parts of the representation space. Arcing (Breiman, 1998) is
similar to boosting, but uses a different weighting scheme and predicts with a majority vote.
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Stacked generalization or stacking (Wolpert, 1992), like weighted majority, is an ensemble
method for combining the decisions of different types of learners. However, stacking uses the
predictions of the base learners to form training examples for a meta-learner. Stacking begins by
partitioning the original examples into three sets: training, validation, and testing. The method
trains the base learners using the training data and then applies the resulting classifiers to the ex-
amples in the validation set. Using the predictions of the examples as features and their original
class labels, it forms a new training set, which it uses to train the meta-learner. After training the
meta-learner with these examples, performance entails presenting an instance to the base classifiers,
using their predictions as input to the meta-classifier. The method’s overall prediction is that of the
meta-classifier.

There have been numerous studies of ensemble methods (e.g., Hansen and Salamon, 1990;
Woods et al., 1997; Quinlan, 1996; Zheng, 1998; Opitz and Maclin, 1999; Bauer and Kohavi, 1999;
Maclin and Opitz, 1997; Dietterich, 2000; Zhou et al., 2002; Chawla et al., 2004), and we cannot
survey them all. Generally, this research suggests that ensemble methods outperform single classi-
fiers on many standard data sets (Opitz and Maclin, 1999). Boosting is generally better than bagging
(Bauer and Kohavi, 1999; Opitz and Maclin, 1999; Dietterich, 2000), although bagging seems more
robust to noise than is boosting (Dietterich, 2000). Analysis suggests that ensemble methods work
by reducing bias, variance, or both (Breiman, 1998; Bauer and Kohavi, 1999; Zhou et al., 2002).

Popular ensemble methods, such as bagging and boosting, are off-line algorithms, but re-
searchers have developed online ensemble methods. Winnow (Littlestone, 1988) and weighted
majority (Littlestone and Warmuth, 1994) fall into this category, as do Blum’s (1997) versions of
these algorithms.

Online AdaBoost (Fan et al., 1999), when a new batch of examples arrives, weights the examples
and then re-weights the ensemble’s classifiers based on their performance on the new examples. The
method then builds a new classifier from the new, weighted examples. For efficiency, the method
retains only the k most recent classifiers.

Online arcing (Fern and Givan, 2003) uses incremental base learners and incrementally updates
their voting weights. When a new training instance arrives, for each classifier in the ensemble, the
method first increases the classifier’s voting weight by one if the classifier correctly classifies the
new instance. The method then computes an instance weight for the classifier based on the number
of other classifiers in the ensemble that misclassify the instance. Finally, an incremental learning
function uses the instance and the weight to refine the classifier. The method may use a weighted or
unweighted voting scheme to classify an instance.

2.3 Ensemble Methods for Concept Drift

Ensemble methods for concept drift share many similarities with the online and off-line methods
discussed in the previous section. However, methods for concept drift must take into account the
temporal nature of the data stream, for a set of examples may have certain class labels at time t and
others at time t ′.

Clearly, ensemble methods for concept drift must process a stream of data. Some researchers
have used repeated applications of off-line learning algorithms to process batches of training exam-
ples (Maloof and Michalski, 2000; Street and Kim, 2001; Wang et al., 2003; Scholz and Klinken-
berg, 2005). Others have used incremental algorithms (Blum, 1997; Kolter and Maloof, 2003;
Maloof and Michalski, 2004; Kolter and Maloof, 2005).
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Any method for coping with changing concepts must have mechanisms for refining or removing
knowledge of past target concepts. To achieve these effects, one ensemble method for concept drift
builds two ensembles and selects the best performing one for subsequent processing (Scholz and
Klinkenberg, 2006). Other methods replace poorly performing members of the ensemble (Street
and Kim, 2001; Fan, 2004), decrease the effect these members have on the overall prediction (Blum,
1997; Scholz and Klinkenberg, 2006), or both (Kolter and Maloof, 2003; Wang et al., 2003; Kolter
and Maloof, 2005).

Blum’s (1997) implementation of the weighted majority algorithm (Littlestone and Warmuth,
1994) uses as experts pairs of features coupled with a history of the most recent class labels from
the training set appearing with those features. When a new instance arrives, the expert for a given
pair of features predicts based on a majority vote of the labels of past observations. The global
algorithm predicts based on a weighted-majority vote of the expert predictions and decreases the
weight of any expert that predicts incorrectly. Each expert then stores the correct prediction in its
history.

Blum (1997) also investigated triples of features as experts and a variant of winnow (Littlestone,
1988) that lets experts abstain if their features are not present in an instance. On a calendar schedul-
ing task, which we describe further in Section 4.3, these methods were able to track a professor’s
preferences for scheduling meetings across semester boundaries.

The Streaming Ensemble Algorithm (SEA) maintains a fixed-size collection of classifiers, each
built from a batch of training examples (Street and Kim, 2001). When a new batch of examples
arrives, SEA uses C4.5 (Quinlan, 1993) to build a decision tree. If there is space, SEA adds the new
classifier to the ensemble. Otherwise, if the new classifier outperforms a classifier in the ensemble,
SEA replaces it with the new one. Performance is measured on the current batch of examples.
Overall, SEA predicts based on a majority vote of the predictions of the classifiers in the ensemble.
An evaluation using a synthetic data set generated from shifting a hyperplane revealed that the
method was able to acquire a series of four changing target concepts with accuracy of about 92%.
We discuss this data set further in Section 4.2.

Herbster and Warmuth (1998) consider a setting in which an online learner is trained over sev-
eral concepts and has access to n experts (which are fixed prediction strategies). They present an
algorithm that performs almost as well as the best expert on each concept individually, paying an
additional penalty of logn on each concept. Bousquet and Warmuth (2002) extend this setting to
one where the best expert always comes from a smaller pool of m� n experts. Here they show
that the learner can pay a logm rather than a logn penalty on each concept, plus a one-time cost of
log

(n
m

)

to identify the best m experts.
The Accuracy-weighted Ensemble (AWE) also maintains a fixed-size collection of classifiers

built from batches of training examples, but this method weights each classifier based on its perfor-
mance on the most recent batch (Wang et al., 2003). If there is space in the ensemble, then AWE adds
the new weighted classifier. Otherwise, it keeps only the top k weighted classifiers. AWE predicts
based on a weighted-majority vote of the predictions of the ensemble’s classifiers. The evaluation
of this method involved a synthetic data set generated from a rotating hyperplane and a data set for
credit card fraud detection. Although the evaluation consisted of many experimental conditions,
such as how the problem’s dimension affects error rate of the ensemble classifier, it did not include
measuring the system’s performance over time and over changing target concepts.

Kolter and Maloof (2005) present AddExp, an algorithm for additive expert ensembles. It is
similar to dynamic weighted majority, but unlike DWM, AddExp submits to formal analysis due

2762



DYNAMIC WEIGHTED MAJORITY

to differences in their weighting schemes. DWM sets the weight of a new expert to one, whereas
AddExp sets a new expert’s weight to the total weight of the ensemble times some parameter γ ∈
(0,1). In addition to empirical results, the authors present worst-case bounds for the algorithm’s
loss and number of mistakes, proving that AddExp performs almost as well as the best-performing
expert. They also describe two pruning methods for limiting the number of experts maintained; one
is useful in practice, the other gives formal guarantees on the number of experts that AddExp will
create.

3. DWM: An Ensemble Method for Concept Drift

Dynamic weighted majority maintains a weighted pool of experts or base learners. It adds and
removes experts based on the global algorithm’s performance. If the global algorithm makes a
mistake, then DWM adds an expert. If an expert makes a mistake, then DWM reduces its weight.
If, in spite of multiple training episodes, an expert performs poorly, as indicated by a sufficiently
low weight, then DWM removes it from the ensemble. This method is general, and in principle, one
could use any online learning algorithm as a base learner. One could also use different types of base
learners, although one would also have to implement control policies to determine what base learner
to add.

The formal algorithm for DWM appears in Figure 1. The algorithm maintains a set of m experts,
E, each with a weight, wi for i = 1, . . . ,m. Input to the algorithm is n training examples, each
consisting of a feature vector and a class label. The parameters also include the number of classes
(c) and β, a multiplicative factor that DWM uses to decrease an expert’s weight when it predicts
incorrectly. A typical value for β is 0.5. The parameter θ is a threshold for removing poorly
performing experts. If an expert’s weight falls below this threshold, then DWM removes it from the
ensemble. Finally, the parameter p determines how often DWM creates and removes experts. We
found this parameter useful and necessary for large or noisy problems, which we discuss further in
Section 4.2. In the following discussion, we assume p = 1.

DWM begins by creating an ensemble containing a single learner with a weight of one (lines 1–3
of Figure 1). Initially, this learner could predict a default class, or it could predict using previous
experience, background knowledge, or both. DWM then takes a single example (or perhaps a set of
examples) from the stream and presents it to the single learner to classify (line 7). If the learner’s
prediction is wrong (line 8), then DWM decreases the learner’s weight by multiplying it by β (line 9).
Since there is one expert in the ensemble, its prediction is DWM’s global prediction (lines 12 and
24). If DWM’s global prediction is incorrect (line 16), then it creates a new learner with a weight of
one (lines 17–19). DWM then trains the experts in the ensemble on the new example (line 23). After
training, DWM outputs its global prediction (line 24).

When there are multiple learners, DWM obtains a classification from each member of the ensem-
ble (lines 6 and 7). If one’s prediction is incorrect, then DWM decreases its weight (lines 8 and 9).
Regardless of the correctness of the prediction, DWM uses each learner’s prediction and its weight
to compute a weighted sum for each class (line 10). The class with the most weight is set as the
global prediction (line 12).

Since DWM always decreases the weights of experts, it normalizes the weights by scaling them
uniformly so that, after the transformation, the maximum weight is one (line 14). This prevents
newly added experts from dominating predictions. DWM also removes poorly performing experts
by removing those with a weight less than the threshold θ (line 15), although it will not remove the
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Dynamic-Weighted-Majority ( {~x,y}1
n,c,β,θ, p )

{~x,y}1
n: training data, feature vector and class label

c ∈ N
∗: number of classes, c≥ 2

β: factor for decreasing weights, 0≤ β < 1
θ: threshold for deleting experts
p: period between expert removal, creation, and weight update
{e,w}1

m: set of experts and their weights
Λ,λ ∈ {1, . . . ,c}: global and local predictions
~σ ∈ R

c: sum of weighted predictions for each class

1. m← 1
2. em← Create-New-Expert()

3. wm← 1
4. for i← 1, . . . ,n // Loop over examples
5. ~σ← 0
6. for j← 1, . . . ,m // Loop over experts
7. λ← Classify(e j,~xi)

8. if (λ 6= yi and i mod p = 0)

9. w j← βw j

10. σλ← σλ +w j

11. end;
12. Λ← argmax j σ j

13. if (i mod p = 0)
14. w← Normalize-Weights(w)
15. {e,w}← Remove-Experts({e,w},θ)
16. if (Λ 6= yi)
17. m← m+1
18. em← Create-New-Expert()
19. wm← 1
20. end;
21. end;
22. for j← 1, . . . ,m
23. e j← Train(e j,~xi,yi)
24. output Λ

end;
end.

Figure 1: Algorithm for dynamic weighted majority (DWM), after Kolter and Maloof (2005).
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last expert in the ensemble. As mentioned previously, if the global prediction is incorrect (line 16),
DWM adds a new expert to the ensemble with a weight of one (lines 17–19). Finally, after using
the new example to train each learner in the ensemble (lines 22 and 23), DWM outputs the global
prediction, which is the weighted vote of the expert predictions (line 24).

As mentioned previously, the parameter p lets DWM better cope with many or noisy examples.
p defines the period over which DWM will not update learners’ weights (line 8) and will not remove
or create experts (line 13). During this period, however, DWM still trains the learners (lines 22 and
23).

DWM is a general algorithm for coping with concept drift. One can use any online learning
algorithm as the base learner. To date, we have evaluated two such algorithms, naive Bayes and
Incremental Tree Inducer, and we describe these versions in the next two sections.

3.1 DWM-NB

DWM-NB uses an incremental version of naive Bayes as the base learner. For this study, we used the
implementation from WEKA (Witten and Frank, 2005), which stores for nominal attributes a count
for each class and for each attribute value given the class. The count is simply the number of times
each class or attribute value appears in the training set, and so the learning element increments the
appropriate counts when processing a new example. The performance element uses these counts to
compute estimates of the prior probability of each class, P(Ci), and the conditional probability of
each attribute value given the class, P(v j|C j). It then operates under the assumption that attributes
are conditionally independent and uses Bayes’ rule to predict the most probable class:

C = argmax
Ci

P(Ci)∏
j

P(v j|Ci) .

For numeric attributes, it stores the sum of an attribute’s values and the sum of the squared values.
Given a value, v j,

P(v j|Ci) =
1

σi j
√

2π
e−(v j−µi j)

2/2σ2
i j ,

where µi j is the average of the jth attribute’s values for the ith class, and σi j is their standard
deviation. The performance element computes these values from the stored sums.

3.2 DWM-ITI

DWM-ITI uses as a base learner an incremental algorithm for inducing decision trees, called Incre-
mental Tree Inducer, or ITI (Utgoff et al., 1997). ITI uses as its concept description a decision tree
with only binary tests. (Note that we can represent multi-valued attributes with a binary tree by
treating each value as a binary attribute.) A decision tree is a rooted tree with internal nodes corre-
sponding to attributes. Edges correspond to attribute values. For numeric attributes, there are two
edges corresponding to a cut-point: one edge for values above the cut-point, the other for values less
than or equal to the cut-point. The external nodes of the decision tree correspond to class labels.
To facilitate incremental learning, external nodes also store examples, while the internal nodes of
ITI’s decision trees store frequency counts for symbolic attributes and a list of observed values for
numeric attributes.
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Like standard decision tree algorithms, given an observation, the performance element uses the
observation’s attributes and their values to traverse from the root node to an external node. It predicts
the class label stored in the node.

ITI updates a tree by propagating a new example to a leaf node. During the descent, the al-
gorithm updates the information stored at each node—counts or values—and upon reaching a leaf
node, determines if the tree should be extended by converting the leaf node to a decision node. A
secondary process examines whether the tests at each node are most appropriate, and if not, restruc-
tures the tree accordingly.

As one can imagine, for large problems, storing all examples at leaf nodes and restructuring
decision trees can be costly, especially when maintaining an ensemble of such trees. While we
were judicious when applying DWM-ITI to large problems, as we see in the next section, where we
discuss our experimental study, the learner performed well in spite of these potential costs.

4. Empirical Study and Results

In this section, we present experimental results for DWM-NB and DWM-ITI. We conducted five
evaluations. The first, most extensive evaluation involved the STAGGER concepts (Schlimmer and
Granger, 1986), a standard benchmark for evaluating how learners cope with drifting concepts. In
this evaluation, we compared the performance of DWM-NB and DWM-ITI

1. to best- and worst-case base learners,

2. to our implementation of STAGGER (Schlimmer, 1987),

3. to AQ-PM (Maloof and Michalski, 2000), AQ11-PM (Maloof and Michalski, 2004), and AQ11-
PM+WAH (Maloof, 2003), and

4. to Blum’s (1997) implementation of weighted majority.

To the best of our knowledge, ours are the only results for Blum’s algorithm on the STAGGER

concepts.
In an effort to determine how our method scales to larger problems involving concept drift, our

second evaluation consisted of testing DWM-NB using the SEA concepts (Street and Kim, 2001),
a problem recently proposed in the data mining community. For the third evaluation, we applied
DWM-NB to the CAP data set, a calendar scheduling task (Mitchell et al., 1994). Blum (1997) used
this problem to evaluate weighted majority and winnow. For the fourth, we evaluated DWM-NB on
the task of predicting the price of electricity in New South Wales, Australia, between May 1997 and
December 1999, a problem originally introduced by Harries (1999).

Finally, although it is clear that DWM should have no advantage over a single learner when
acquiring static concepts, for the sake of completeness, we evaluated DWM-NB on twenty-six data
sets from the UCI Repository (Asuncion and Newman, 2007). The intent of this evaluation was to
show that, on static concepts, DWM performs no worse than a single base learner.

4.1 The STAGGER Concepts

The STAGGER concepts (Schlimmer and Granger, 1986) comprise a standard benchmark for eval-
uating a learner’s performance in the presence of concept drift. Each example consists of three at-
tribute values: color ∈ {green, blue, red }, shape ∈ {triangle, circle, rectangle}, and size ∈ {small,
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Figure 2: Visualization of the STAGGER Concepts (Maloof and Michalski, 2000). c© 2000 Kluwer
Academic Publishers. Used with permission.

medium, large}. The presentation of training examples lasts for 120 time steps, and at each time
step, the learner receives one example. For the first 40 time steps, the target concept is color =
red ∧ size = small. During the next 40 time steps, the target concept is color = green ∨ shape =
circle. Finally, during the last 40 time steps, the target concept is size = medium ∨ size = large. A
visualization of these concepts appears in Figure 2.

To evaluate the learner, at each time step, one randomly generates 100 examples of the current
target concept, presents these to the performance element, and computes the percent correctly pre-
dicted. In our experiments, we repeated this procedure 50 times and averaged the accuracies over
these runs. We also computed 95% confidence intervals.

We set the weighted-majority learners—DWM-NB, DWM-ITI, and Blum’s (1997) with pairs of
features as experts—to halve an expert’s weight when it made a mistake (i.e., β = 0.5). For Blum’s
weighted majority, each expert maintained a history of only its last prediction (i.e., k = 1), under
the assumption that this setting would provide the most reactivity to concept drift. For DWM, we set
it to update its weights and create and remove experts every time step (i.e., p = 1). The algorithm
removed experts when their weights fell below 0.01 (i.e., θ = 0.01). Pilot studies indicated that
these were the near-optimal settings for p and k; varying β affected performance little; the selected
value for θ did not affect accuracy, but did reduce considerably the number of experts.

For the sake of comparison, in addition to these algorithms, we also evaluated naive Bayes, ITI,
naive Bayes with perfect forgetting, and ITI with perfect forgetting. The “standard” or “traditional”
implementations of naive Bayes and ITI provided a worst-case evaluation, since these systems have
not been designed to cope with concept drift and learn from all examples in the stream regardless
of changes to the target concept. The implementations with perfect forgetting, which is the same as
training the methods on each target concept individually, provided a best-case evaluation, since the
systems were never burdened with examples or concept descriptions from previous target concepts.

The left graph of Figure 3 shows the results for DWM-NB on the STAGGER concepts. As ex-
pected, naive Bayes with perfect forgetting performed the best on all three concepts, while naive
Bayes without forgetting performed the worst. DWM-NB performed almost as well as naive Bayes
with perfect forgetting, which converged more quickly to the target concept. Nonetheless, by time
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Figure 3: Predictive accuracy with 95% confidence intervals for DWM on the STAGGER concepts
(Kolter and Maloof, 2003). Left: DWM-NB. Right: DWM-ITI. c© 2003 IEEE Press. Used
with permission.
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Figure 4: Number of experts maintained with 95% confidence intervals for DWM-NB and DWM-ITI

on the STAGGER concepts (Kolter and Maloof, 2003). c© 2003 IEEE Press. Used with
permission.

step 40 for all three target concepts, DWM-NB performed almost as well as naive Bayes with perfect
forgetting.

DWM-ITI performed similarly, as shown in the right graph of Figure 3, achieving accuracies
nearly as high as ITI with perfect forgetting. DWM-ITI converged more quickly than did DWM-
NB to the second and third target concepts, but if we compare the plots for naive Bayes and ITI

with perfect forgetting, we see that ITI converged more quickly to these target concepts than did
naive Bayes. Thus, the faster convergence is due to differences in the base learners rather than to
something inherent to DWM.

In Figure 4, we present the average number of experts each system maintained over the fifty
runs. On average, DWM-ITI maintained fewer experts than did DWM-NB, and we attribute this to the
fact that ITI performed better on the individual concepts than did naive Bayes. Since naive Bayes
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Figure 5: Predictive accuracy with 95% confidence intervals on the STAGGER concepts. Left:
DWM-ITI, AQ-PM, and AQ11. Right: DWM-ITI, AQ11-PM, and AQ11-PM+WAH.
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majority (Kolter and Maloof, 2003). c© 2003 IEEE Press. Used with permission.

made more mistakes than did ITI, DWM-NB created more experts than did DWM-ITI. We can also
see in the figure that the rates of removing experts were roughly the same for both learners.

The left graph of Figure 5 compares the performance of DWM-ITI to that of AQ-PM (Maloof
and Michalski, 2000) and AQ11 (Michalski and Larson, 1983). DWM-ITI and AQ-PM performed
similarly on the first target concept, but DWM-ITI significantly outperformed AQ-PM on the second
and third concepts, again, in terms of asymptote and slope. AQ11, although not designed to cope
with concept drift, outperformed DWM-ITI in terms of asymptote on the first concept and in terms
of slope on the third, but on the second concept, performed significantly worse than did DWM-ITI.

The right graph of Figure 5 compares the performance of DWM-ITI to that of AQ11-PM (Maloof
and Michalski, 2004) and AQ11-PM+WAH (Maloof, 2003). DWM-ITI did not perform as well as
these other learners on the first target concept, performed comparably on the second, and converged
more quickly on the third.
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The left graph of Figure 6 compares the performance of our learners to that of our implemen-
tation of STAGGER (Schlimmer, 1987). Comparing to both DWM learners, STAGGER’s performance
was only slightly better on the first target concept, notably worse on the second, and comparable on
the third.

Finally, the right diagram of Figure 6 shows the results from the experiment involving Blum’s
(1997) implementation of weighted majority, the implementation that uses pairs of features as ex-
perts. This learner outperformed DWM-NB and DWM-ITI on the first target concept, performed
slightly worse on the second, and performed considerably worse on the third.

With respect to complexity of the experts themselves, the STAGGER concepts consist of three
attributes, each taking one of three possible values. Therefore, this implementation of weighted ma-
jority maintained 27 experts throughout the presentation of examples, as compared to the maximum
of six that DWM-NB maintained. Granted, pairs of features and their recent predictions are much
simpler than the decision trees that ITI produced, but naive Bayes was quite efficient, maintaining
twenty-one integers for each expert. There were occasions when Blum’s weighted majority used
less memory than did DWM-NB, but we anticipate that using more sophisticated classifiers, such as
naive Bayes, instead of all combinations of pairs of features, will lead to scalable algorithms.

We focus our analysis on DWM-ITI, since it performed better than did DWM-NB on this problem.
Researchers have built several systems for coping with concept drift and have evaluated many of
them on the STAGGER concepts. FLORA2 (Widmer and Kubat, 1996) is a prime example, and on
the first target concept, DWM-ITI did not perform as well as did FLORA2. However, on the second
and third target concepts, DWM-ITI performed notably better than did FLORA2, not only in terms of
asymptote, but also in terms of slope.

DWM-ITI outperformed AQ-PM (Maloof and Michalski, 2000), which had difficulty acquiring
the second and third concepts (see Figure 5). AQ-PM maintains examples over a fixed window of
time and, at each time step, relearns concepts from these and new examples. In this experiment,
when the concept changed from the first to the second, the examples of the first concept remaining
in this window prevented AQ-PM from adjusting quickly to the second. Decreasing the size of this
window improved accuracy on the second concept, but negatively affected performance on the third.

Compared to DWM-ITI, AQ11 performed poorly on the second concept, but performed excep-
tionally well on the third concept. Our analysis suggests that its poor performance on the second
concept was because of AQ11’s expressive language for representing concepts. Notice that all of
its rules achieved 100% on the first concept (see Figure 5, left). However, AQ11 produced twelve
different rules for the first concept over the fifty runs. Some rules were similar, but others were
quite different. AQ11 modifies its rules using only new examples, and in some cases, was able to
transform rules for the first concept into rules with high accuracy on the second. Indeed, when we
trained AQ11 only on examples of the second concept, it achieved 97%. However, in some trials,
AQ11 was unable to make the required transformation and failed to learn adequately the second
concept. We contend that if AQ11 produced simpler rules, provided that they were the right ones,
it would have performed much better on the second concept. Indeed, it is well known that simpler
models often perform better than do more complex ones.

AQ11-PM (Maloof and Michalski, 2004) and AQ11-PM+WAH (Maloof, 2003) performed com-
parably to DWM-ITI (see Figure 5), although DWM-ITI did appear to outperform the AQ learners on
the third concept, especially in the later time steps. Although tangential, it is interesting to contrast
the performances of AQ11 and AQ11-PM. The only difference between these two learners is that
AQ11-PM maintains a fixed window of thirty examples that have appeared on the boundaries of

2770



DYNAMIC WEIGHTED MAJORITY

concept descriptions. When new examples arrive, AQ11-PM learns incrementally from these new
examples and those present in the window. Although the presence of these examples may have
decreased AQ11’s (i.e., AQ11-PM’s) performance on the third concept, their presence notably im-
proved its performance on the second concept. If our hypothesis is correct—that AQ11 would have
performed better had it produced simpler models—the examples held in the window may have con-
strained AQ11 such that it produced simpler models. Put another way, the examples in the window
reduced the instability of the learner. We found this discovery intriguing and plan to investigate it
in future work.

STAGGER (Schlimmer and Granger, 1986) performed comparably to DWM-ITI on the first and
third target concepts, but did not perform as well as DWM-ITI on the second target concept. (See
Figure 6, left.) Generally, acquiring the second concept after learning the first is the hardest task, as
the second concept is almost a reversal of the first; the two concepts share only one positive example.
Acquiring the third concept after acquiring the second is easier because the two concepts share a
greater number of positive examples. Performing well on the second concept therefore requires
quickly disposing of knowledge and perhaps examples of the first target concept. A learning method,
such as STAGGER, that only refines concept descriptions will have more difficulty responding to
concept drift, as compared to an ensemble method, such as DWM, that both refines existing concept
descriptions and creates new ones.

Comparing DWM-ITI to Blum’s weighted majority, DWM-ITI outperformed it on the STAGGER

concepts. However, our analysis suggests that the difference in performance is due to the experts,
rather than to the global algorithms. Recall that Blum’s weighted majority uses as experts pairs of
features with a brief history of past predictions. For the STAGGER concepts, pairs of features are
useful for acquiring the first target concept (see Figure 2), which is conjunctive. Indeed, pairs of
features are two-term conjunctions. However, the second and third concepts are disjunctive, and
these are difficult to represent using only weighted pairs of features. As a result, on the STAGGER

concepts, Blum’s weighted majority did not perform as well as DWM.

Overall, we concluded that DWM-ITI outperformed these other learners in terms of accuracy,
both in slope and asymptote. In reaching this conclusion, we gave little weight to performance on
the first concept, since most learners can acquire it easily and doing so requires no mechanisms
for coping with drift. On the second and third concepts, with the exception of AQ11, DWM-ITI

performed as well or better than did the other learners. And while AQ11 outperformed DWM-ITI in
terms of slope on the third concept, this does not mitigate AQ11’s poor performance on the second.

We attribute the performance of DWM-ITI to the training of multiple experts on different se-
quences of examples. (Weighting experts also contributed, and we will discuss this topic in detail
shortly.) Assume a learner incrementally modifies its concept descriptions as new examples arrive.
When the target concept changes, if the new one is disjoint, then the best policy to learn new de-
scriptions, rather than modifying existing ones. This makes intuitive sense, since the learner does
not have to first unlearn the old concept, and results from this and other empirical studies support
this assertion (Maloof and Michalski, 2000, 2004). Unfortunately, target concepts are not always
disjoint, it is difficult to determine precisely when concepts change, and it is challenging to identify
which concept descriptions (or parts of concept descriptions) apply to new target concepts. DWM ad-
dresses these problems by incrementally updating existing descriptions and, in parallel, by learning
new concept descriptions.
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Figure 7: Performance with 95% confidence intervals of DWM-NB on the SEA concepts with 10%
class noise (Kolter and Maloof, 2003). Left: Predictive accuracy. Right: Number of
experts maintained. c© 2003 IEEE Press. Used with permission.

4.2 Performance on a Larger Data Set with Concept Drift

To determine how well DWM-NB performs on larger problems involving concept drift, we evaluated
it using a synthetic problem recently proposed in the data mining community (Street and Kim,
2001). This problem, which we call the “SEA concepts”, consists of three attributes, xi ∈ R such
that 0.0 ≤ xi ≤ 10.0. The target concept is x1 + x2 ≤ b, where b ∈ {7,8,9,9.5}. Thus, x3 is an
irrelevant attribute.

The presentation of training examples lasts for 50,000 time steps. For the first fourth (i.e.,
12,500 time steps), the target concept is with b = 8. For the second, b = 9; the third, b = 7; and
the fourth, b = 9.5. For each of these four periods, we randomly generated a training set consisting
of 12,500 examples. In one experimental condition, we added 10% class noise; in another, we did
not, and this latter condition served as our control. We also randomly generated 2,500 examples
for testing. At each time step, we presented each method with one example, tested the resulting
concept descriptions using the examples in the test set, and computed the percent correct. We
repeated this procedure ten times, averaging accuracy over these runs. We also computed 95%
confidence intervals.

On this problem, we evaluated DWM-NB, naive Bayes, and naive Bayes with perfect forgetting.
We set DWM-NB to halve the expert weights (i.e., β = 0.5) and to update these weights and to create
and remove experts every fifty time steps (i.e., p = 50). We set the algorithm to remove experts with
weights less than 0.01 (i.e., θ = 0.01).

In the left graph of Figure 7, we see the predictive accuracies for DWM-NB, naive Bayes, and
naive Bayes with perfect forgetting on the SEA concepts with 10% class noise. As with the STAGGER

concepts, naive Bayes performed the worst, since it had no direct method of removing outdated
concept descriptions. Naive Bayes with perfect forgetting performed the best and represents the
best possible performance for this implementation on this problem. Crucially, DWM-NB achieved
accuracies nearly equal to those achieved by naive Bayes with perfect forgetting.

Finally, the right graph of Figure 7 shows the number of experts that DWM-NB maintained during
the runs with and without class noise. Recall that DWM creates an expert when it misclassifies an
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example. In the noisy condition, since 10% of the examples had been relabeled, DWM-NB made
more mistakes and therefore created more experts than it did in the condition without noise.

As mentioned previously, DWM has the potential for creating a large number of experts, espe-
cially in noisy domains, since it creates a new expert every time the global prediction is incorrect.
(The parameter p can help mitigate this effect.) A large number of experts obviously impacts mem-
ory utilization, and, depending on the complexity of the base learners, could also affect learning and
performance time, since DWM trains and queries each expert in the ensemble when a new example
arrives. An obvious scheme when resources are constrained is to limit the number of experts that
DWM maintains.

To investigate this strategy’s effect on DWM’s performance, we produced a version of the algo-
rithm that always keeps the k best performing experts. That is, after reaching the point where there
are k experts in the ensemble, when DWM adds a new expert, it removes the expert with the lowest
weight. In this version of DWM, we set the threshold for removing experts to zero, which guaranteed
that experts were removed only if they were the weakest member of the ensemble of k experts.

We ran this modified version on the SEA concepts, capping the number of experts at five and at
ten. We present these results in Figure 8. As one can see, for this problem, restricting the number
of experts did not appreciably impact performance. Indeed, DWM-NB with five experts performed
almost as well as the original algorithm that placed no limit on the number of experts created.

Comparing our results for the SEA concepts to those reported by Street and Kim (2001), DWM-
NB outperformed SEA on all four target concepts. On the first concept, performance was similar
in terms of slope, but not in terms of asymptote, and on subsequent concepts, DWM-NB converged
more quickly to the target concepts and did so with higher accuracy. For example, on concepts 2–4,
just prior to the point at which concepts changed, SEA achieved accuracies in the 90–94% range,
while DWM-NB’s were in the 96–98% range.

We suspect this is most likely due to SEA’s unweighted voting procedure and its method of
creating and removing new classifiers. Recall that the method trains a new classifier on a fixed
number of examples. If the new classifier improves the global performance of the ensemble, then it
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is added, provided the ensemble does not contain a maximum number of classifiers; otherwise, SEA

replaces a poorly performing classifier in the ensemble with the new classifier.
However, if every classifier in the ensemble has been trained on a given target concept, and the

concept changes to one that is disjoint, then SEA must replace at least half of the classifiers in the
ensemble before accuracy on the new target concept will surpass that on the old. For instance, if the
ensemble consists of 20 classifiers, and each learns from a fixed set of 500 examples, then it would
take at least 5,000 additional training examples before the ensemble contained a majority number
of classifiers trained on the new concept.

In contrast, DWM under similar circumstances requires only 1,500 examples. Assume p = 500,
the ensemble consists of 20 fully trained classifiers, all with a weight of one, and the new concept
is disjoint from the previous one. When an example of this new concept arrives, all 20 classifiers
will predict incorrectly, DWM will reduce their weights to 0.5—since the global prediction is also
incorrect—and it will create a new classifier with a weight of one. It will then process the next 499
examples.

Assume another example arrives. The original 20 experts will again misclassify the example,
and the new expert will predict correctly. Since the weighted prediction of the twenty will be greater
than that of the one, the global prediction will be incorrect, the algorithm will reduce the weights
of the twenty to 0.25, and it will again create a new expert with a weight of one. DWM will again
process 499 examples.

Assume a similar sequence of events occurs: another example arrives, the original twenty mis-
classify it, and the two new ones predict correctly. The weighted-majority vote of the original twenty
will still be greater than that of the new experts (i.e., 20(0.25) > 2(1)), so DWM will decrease the
weight of the original twenty to 0.125, create a new expert, and process the next 499 examples.
However, at this point, the three new classifiers trained on the target concept will be able to overrule
the predictions of the original twenty, since 3(1) > 20(0.125). Crucially, DWM will reach this state
after processing only 1,500 examples.

Granted, this analysis of SEA and DWM does not take into account the convergence of the base
learners, and as such, it is a best-case analysis. The actual number of examples required may be
greater for both to converge to a new target concept, but the relative proportion of examples should
be similar. This analysis also holds if we assume that DWM replaces experts, rather than creating
new ones. Generally, ensemble methods with weighting mechanisms, like those present in DWM,
will converge more quickly to target concepts (i.e., require fewer examples) than will methods that
replace unweighted learners in the ensemble.

Regarding the number of experts that DWM maintained, we used a simple heuristic that added a
new expert whenever the global prediction was incorrect, which intuitively, should be problematic
for noisy domains. However, on the SEA concepts, while DWM-NB maintained as many as 40
experts at, say, time step 37,500, it maintained only 22 experts on average over the 10 runs, which
is similar to the 20–25 that SEA reportedly stored (Street and Kim, 2001).

If the number of experts were to reach impractical levels, then DWM could simply stop creating
experts after obtaining acceptable accuracy; training would continue. Plus, we could easily dis-
tribute the training of experts to processors of a network or of a course-grained parallel machine.
And as the results pictured in Figure 8 demonstrate, we can limit the number of experts that DWM

maintains with potentially little effect on accuracy.
One could argue that better performance of DWM-NB is due to differences between the base

learners. SEA was an ensemble of C4.5 classifiers (Quinlan, 1993), while DWM-NB, of course, used
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naive Bayes as the base learner. We refuted this hypothesis by running both base learners on each
of the four target concepts. Both achieved comparable accuracies on each concept. For example, on
the first target concept, C4.5 achieved 99% accuracy and naive Bayes achieved 98%. Since these
learners performed similarly, we concluded that our positive results on this problem were due not to
the superiority of the base learner, but to the mechanisms that create, weight, and remove experts.

We did not evaluate DWM-ITI on the SEA concepts, since ITI maintains all training examples
and all observed values for continuous attributes, and this would have led to impractical memory
requirements. However, this does not exclude the possibility of using DWM on large data sets with a
decision-tree learner as the base algorithm. For instance, we could use ITI, but implement schemes
to index stored training examples, which would reduce memory requirements. We could also use
a decision-tree learner that does not store examples, such as ID4 (Schlimmer and Fisher, 1986) or
VFDT (Domingos and Hulten, 2000).

4.3 Calendar Scheduling Domain

The Calendar Apprentice (CAP) predicts user preferences for scheduling meetings in an academic
institution (Mitchell et al., 1994). The task is to predict a user’s preference for a meeting’s location,
duration, starting time, and day of the week. The data set consists of 34 features—such as the
type of meeting, the purpose of the meeting, the type of attendees, and whether the meeting occurs
during lunchtime—with intersecting subsets of these features for each prediction task. There are 12
features for location, 11 for duration, 15 for start time, and 16 for day of week. Although data are
available for two users, we used the 1,685 examples of the preferences for User 1 (Tom Mitchell).

For this experiment, we evaluated naive Bayes and DWM-NB. However, unlike previous designs,
in which we tested the resulting classifiers using a test set, in this design, we measured performance
on the next example (i.e., the next meeting to be scheduled). For this application, when another
user proposes a meeting, the Calendar Apprentice predicts, say, the meeting’s location, and the user
either accepts or rejects the recommendation. The learner then uses this feedback to update its
model of the user’s preferences.

Table 1 shows the average performance of naive Bayes and DWM-NB for the calendar schedul-
ing task. With the exception of predicting the preferred day of week for meetings, DWM-NB outper-
formed naive Bayes. Over the four prediction tasks, DWM-NB outperformed naive Bayes. As one
can see, increasing the parameter p, which governs how often DWM updates its experts, generally
decreased DWM’s performance. Figure 9 shows accuracy versus the number of examples for the two
learners on the four prediction tasks. According to Blum (1997), the sharp decreases in accuracy
roughly correspond to the boundaries of semesters.

On this problem, Blum (1997) reported that, over the four prediction tasks, the CAP system
averaged 53% and weighted majority with pairs of features averaged 57%. (Other algorithms in this
study, such as winnow, performed even better.) DWM-NB averaged about 55%, which was better
than the original CAP system, which used a decision tree to predict, but it was not better than Blum’s
weighted majority.

However, our analysis of this data set suggests that, again, these differences in performance were
due to the base learners rather than to the global algorithms. Because of their complexity, we were
not able to analyze the CAP concepts in the same manner that we analyzed the STAGGER concepts.
We were nonetheless able to determine that pairs (and triples) of features were better suited to the
prediction tasks than were all of the features. It is well known that naive Bayes can be sensitive to
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DWM-NB

Prediction Task Naive Bayes p = 1 p = 10 p = 50
Location 62.14 65.69 65.16 62.43
Duration 62.37 64.44 64.62 63.03

Start Time 32.40 38.10 37.39 34.96
Day of Week 51.22 51.16 49.13 51.34

Average 52.03 54.85 54.07 52.84

Table 1: Percent correct of naive Bayes and DWM-NB on the CAP data set, using 1,685 examples
for User 1. The variance of 1,685 Bernoulli trials is 0.0144%.
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Figure 9: Accuracy on four calendar scheduling tasks for DWM-NB and naive Bayes. Measures are
averages of the previous 100 predictions.
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Figure 10: Performance of DWM-NB on the electricity pricing task. Measures are averages of the
previous 2,352 predictions. Left: Predictive accuracy. Right: Number of experts main-
tained.

conditionally-dependent attributes, and we suspect that this is why Blum’s (1997) implementation
of weighted majority outperformed DWM-NB on this problem.

Since Blum’s implementation forms concept descriptions consisting of weighted pairs of at-
tribute values, we reasoned that conditionally-dependent attributes would have less affect on its per-
formance than they would on naive Bayes’. Indeed, experts that predict based on pairs of attribute
values should benefit from conditionally-dependent attributes. Furthermore, since the weighting
scheme identifies sets of predictive pairs of attribute values, it should do so regardless of condi-
tional dependence among those attributes.

4.4 Electricity Pricing Domain

As a second evaluation on a real-world problem, we selected the domain of electricity pricing (Har-
ries, 1999; Gama et al., 2004). Harries (1999) obtained this data set from TransGrid, the electricity
supplier in New South Wales, Australia. It consists of 45,312 instances collected at 30-minute in-
tervals between 7 May 1996 and 5 December 1998.1 Each instance consists of five attributes and a
class label of either up or down. There are two attributes for time: day of week, which is an integer
in [1,7], and period of day, which is an integer in [1,48] (since there are 48 thirty-minute periods in
one day). The remaining three attributes are numeric and measure current demand: the demand in
New South Wales, the demand in Victoria, and the amount of electricity scheduled for transfer be-
tween the two states. The task is to use the attribute values to predict whether the price of electricity
will go up or down.

Since predicting the price of electricity is an online task, we processed the examples in temporal
order—the order they appeared in the data set. For each example, we first obtained predictions from
DWM-NB and from naive Bayes, and then trained each learner on the example. (This is the same
experimental design we followed for the calendar scheduling task.) As before, we set DWM to halve
expert weights (β = 0.5), to update each time step (p = 1), and to remove an expert if its weight
falls below 0.01 (θ = 0.01).

Overall, naive Bayes averaged 62.32% and DWM-NB averaged 80.75%, maintaining an average
of 22 experts. For reference, Harries (1999) used an online version of C4.5 (Quinlan, 1993) that

1. Our data set corresponds to the Elec2-3 data set (Harries, 1999).
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built a decision tree from examples in a sliding window and then classified examples in the following
week, reporting accuracies for various window sizes between 66% and 67.7%.

In Figure 10, we present performance curves for accuracy and for the number of experts that
DWM maintained. To produce these curves, we averaged the raw performance metrics over a one-
week period (i.e., 2,352 observations).

As a data set derived from real-world phenomenon, we cannot know definitively if or when
concept drift occurred. Nonetheless, DWM does appear to have been more robust to change present
in the samples than was naive Bayes. One example is the period surrounding time step 10,000.
Naive Bayes’ predictive accuracy fluctuates during this period, but DWM’s remains nearly constant,
on average.

Most illustrative is naive Bayes’ sudden drop of roughly 12% in accuracy between time steps
35,000 and 37,000. DWM’s accuracy decreased slightly and steadily during this period, but there
was no comparable sudden decrease in performance.

The number of experts that DWM maintained fluctuated considerably between 1 and 90, but
with an overall average of 22 experts. In terms of the weekly average, shown in the right graph of
Figure 10, the average size of the ensemble never exceeded 29 experts, which we found encouraging
for a problem with 45,312 examples.

4.5 Evaluation on Static Concepts

Finally, we evaluated DWM-NB on 26 data sets from the UCI Repository (Asuncion and Newman,
2007). It is clear that, for static concepts, there is nothing inherent to the DWM algorithm that would
make it more advantageous than a single learner. However, it is important to establish that DWM

performs no worse than a single learner. Therefore, we selected data sets that varied in the number
of classes, the number of examples, the types of attributes, and the number of missing values.

For each data set, we randomly selected 10% of the examples for testing.2 We presented each
example of the remaining 90% to naive Bayes and to DWM-NB with three settings of the parameter
p: 1, 10, and 50. After each presentation, we evaluated the resulting concept descriptions on the
examples in the testing set. We repeated this procedure ten times, averaging percent correct over
these runs and computing 95% confidence intervals.

The results, presented in Appendix A, demonstrate that DWM-NB performed no worse than naive
Bayes, the single base learner. As one can see in Table 2, naive Bayes outperformed DWM-NB on
most of the tasks (16 of 26), but many of these differences are within 0.5%. For the tasks on which
DWM-NB outperformed naive Bayes, many of the differences in performance were also within this
range. Overall, the average difference in performance is +0.35%—in DWM’s favor—and so we
concluded that, on these data sets, DWM-NB performed no worse than a single instance of naive
Bayes.

In Figures 11–13, we present the learning curves for this experiment. For legibility, we did not
include the curves for DWM-NB with p = 1. Limiting DWM-NB to ten experts reduced performance
only slightly, and we omitted these results for brevity.

2. For data sets with predetermined training and testing sets, we used all available examples to create a single file of
examples and proceeded as described.
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5. Concluding Remarks

Tracking concept drift is important for many applications. Clearly, with learners for drifting con-
cepts, there is a balance between learning that is completely reactive (e.g., predicting based only on
the last example) and learning that is completely unreactive (e.g., predicting based on all encoun-
tered examples). If a learner knew when concepts had changed, it could discard its old descriptions
and start learning anew. However, this may not always lead to optimum performance on a task be-
cause there may be knowledge of the old concept useful for acquiring the new concept. If the learner
could appropriately leverage its relevant old knowledge, then performance on the new concept may
be better, if not in terms of asymptote, then perhaps in terms of slope.

In this paper, we presented an ensemble method based on the weighted majority algorithm (Lit-
tlestone and Warmuth, 1994). Our method, dynamic weighted majority, creates and removes base
algorithms in response to changes in performance, which makes it well suited for problems involv-
ing concept drift. We described two implementations of DWM, one with naive Bayes as the base
learner, the other with ITI (Utgoff et al., 1997). On the problems we considered, a weighted ensem-
ble of learners with mechanisms to add and remove experts in response to changes in performance
provided a better response to concept drift than did other learners, especially those that relied on
only incremental learning (i.e., STAGGER and AQ11), on the maintenance of previously encountered
examples (i.e., FLORA2 and the AQ-PM systems), or on an ensemble of unweighted learners (i.e.,
SEA).

Using the STAGGER concepts, we evaluated DWM-NB and DWM-ITI our implementation of
STAGGER, Blum’s implementation of weighted majority, and four rule learners based on the AQ

algorithm. To determine performance on a larger problem, we evaluated DWM-NB on the SEA con-
cepts. Results on these problems, when compared to other methods, suggest that DWM maintained
a comparable number of experts, but achieved higher predictive accuracies and converged to those
accuracies more quickly. Indeed, to the best of our knowledge, these are the best overall results
reported for these problems.

DWM, on a calendar scheduling task, outperformed the CAP system and performed comparably
to Blum’s weighted majority. On an electricity pricing domain, DWM outperformed a single base
learner and an online version of C4.5 (Harries, 1999). Finally, on several problems with static
concepts, DWM performed as well as a single base learner.

In future work, we plan to investigate more sophisticated heuristics for creating new experts:
Rather than creating an expert when the global prediction is wrong, perhaps DWM should take into
account the expert’s age or its history of predictions. We would also like to investigate another
decision-tree learner as the base algorithm, one that does not maintain encountered examples and
that does not periodically restructure its tree; VFDT (Domingos and Hulten, 2000) is a likely candi-
date.

Although removing experts of low weight yielded positive results for the problems we consid-
ered in this study, it would be beneficial to investigate mechanisms for explicitly handling noise,
such as those present in IB3 (Aha et al., 1991), or for determining when examples are likely to be
from a different target concept, such as those based on the Hoeffding (1963) bounds present in VFDT

(Domingos and Hulten, 2000) and CVFDT (Hulten et al., 2001).
Finally, the most intriguing prospect for future work is to explore the relationship between a

learner’s stability and its skill at coping with drifting concepts. Equally interesting is how certain
mechanisms, such as learning from previously encountered examples in addition to new ones, af-
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fects a learner’s stability and its ability to cope in non-stationary environments. We anticipate that
these investigations will lead to general, robust, and scalable ensemble methods for tracking concept
drift.
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Appendix A. Performance of DWM-NB on Selected UCI Data Sets

To establish DWM’s performance on static concepts, we applied DWM-NB to twenty-six data sets
from the UCI Repository (Asuncion and Newman, 2007). For each data set, we randomly selected
10% of the examples as a testing set, and used the remaining 90% for training. We presented
a single training example to naive Bayes and to DWM-NB, and evaluated the resulting classifiers
on the examples in the testing set, measuring percent correct. We proceeded in this manner until
processing all of the training examples. We then repeated this procedure nine more times for a
total of ten applications, after which we averaged the measures of performance and computed 95%
confidence intervals. Table 2 lists these results. Although DWM-NB did not outperform naive Bayes,
as expected, it also performed no worse. Over these twenty-six data sets, the average difference in
performance is +0.35%. Figures 11–13 contain learning curves for these data sets.
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DWM-NB

Data Set NB p = 1 p = 10 p = 50 ∆%
balance-scale 90.27±0.13 90.19±0.18 89.75±0.43 89.82±0.36 −0.08
breast-cancer 72.60±0.37 70.62±1.42 72.60±0.62 72.88±0.30 +0.28
breast-w 95.99±0.04 95.98±0.07 95.93±0.25 95.98±0.05 −0.01
colic 78.33±0.24 76.24±3.06 79.29±1.05 79.23±0.69 +0.96
credit-a 77.73±0.17 76.52±3.63 78.70±0.67 77.99±0.24 +0.97
credit-g 74.97±0.30 67.56±2.46 73.62±0.96 74.18±0.41 −0.79
diabetes 75.37±0.21 69.94±2.34 74.71±0.84 75.51±0.38 +0.14
glass 46.18±1.36 45.56±3.46 47.05±2.51 47.97±0.85 +1.79
heart-h 83.89±0.42 82.97±1.06 83.17±0.74 83.51±0.62 −0.38
heart-statlog 84.11±0.46 82.89±1.20 83.63±0.57 84.11±0.48 0.00
hepatitis 83.07±0.55 82.60±2.33 84.07±0.76 82.68±0.75 +1.00
hypothyroid 95.37±0.06 95.64±0.33 95.62±0.23 95.38±0.28 +0.27
ionosphere 88.29±0.41 87.60±3.24 88.26±0.72 87.81±0.62 −0.03
kr-vs-kp 87.78±0.09 78.50±7.69 86.65±1.03 87.15±0.41 −0.63
labor 90.67±0.61 89.40±1.33 89.27±0.96 90.33±1.00 −0.34
lymph 77.34±1.87 74.81±1.87 75.50±2.18 76.74±2.65 −0.60
mushroom 95.75±0.03 94.81±1.18 95.00±0.33 95.25±0.19 −0.50
primary-tumor 48.62±0.63 36.76±6.45 44.25±1.94 46.81±1.52 −1.81
segment 79.72±0.13 73.94±11.46 80.32±0.60 80.38±0.37 +0.66
sick 92.71±0.07 94.44±0.32 93.16±0.69 92.32±0.84 +1.73
soybean 92.78±0.15 92.76±0.15 92.50±0.27 90.03±2.14 −0.02
splice 95.37±0.06 95.37±0.06 95.31±0.14 95.23±0.24 0.00
vehicle 45.51±0.28 42.51±2.87 46.33±1.82 44.44±0.81 +0.82
vote 90.09±0.11 89.83±0.25 89.88±0.36 89.91±0.26 −0.18
vowel 63.04±0.81 49.07±10.16 58.60±3.05 61.01±1.92 −2.03
zoo 88.27±0.20 87.97±0.36 87.07±0.90 87.56±0.86 −0.30

Table 2: Performance of naive Bayes (NB) and DWM-NB on twenty-six selected UCI data sets.
DWM-NB created experts every p examples. Measures are percent correct with 95% con-
fidence intervals. Maximum accuracies are typeset in boldface; however, note that many
of the differences are not statistically significant. The final column shows the difference in
percentage between naive Bayes and the best performing DWM classifier.
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Figure 11: Predictive accuracy with 95% confidence intervals of naive Bayes and DWM-NB on se-
lected UCI data sets, balance-scale to heart-statlog.
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Figure 12: Predictive accuracy with 95% confidence intervals of naive Bayes and DWM-NB on se-
lected UCI data sets, hepatitis to primary-tumor.
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Figure 13: Predictive accuracy with 95% confidence intervals of naive Bayes and DWM-NB on se-
lected UCI data sets, segment to zoo.
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